Leçon 123- Corps finis. Applications.

- Généralités sur les corps finis. [1].p415 et [2]p.72
 - 1. Carctéristique
 - Déf : $\varphi : \mathbb{Z} \to k, n \mapsto n.1_k$ alors $Ker(\varphi)$ = idéal de $\mathbb{Z} = n\mathbb{Z}$
 - Déf : Carctéritique du corps k = n (qui engendre le noyau du morphisme précédent)
 - Prop : Soit n=0, soit n est premier
 - Déf : Sous corps premier
 - 2. Cardinal
 - Prop : Si car(k)=0 alors k est infini
 - Déf : Morphisme de Frobenius + prop du morphisme
 - Thm : Si K est un corps fini alors $|K|=p^n$ où p=car(K)
 - Prop : Cardinal des sous corps d'un corps fini
 - 3. Commutativité
 - Lemme d'équation aux classes
 - Dev 1: Thm de Wedderburn
- II. Construction des corps finis
 - 1. Existence et unicité
 - Explication de la construction [1]
 - Dev 2 : Existence et unicité des corps finis [3]
 - Qqes exemples [1]
 - 2. Etude du groupe multiplicatif \mathbb{F}_q^*
 - \mathbb{F}_q^* est cyclique [2]
 - Produit d'éléments de \mathbb{F}_q^* est = à -1 [3]
 - Thm de Wilson [3]
 - 3. Les carrés dans un corps fini [1]
 - \mathbb{F}_q^2 = ensemble des carrés
 - Pour p=2 : $\mathbb{F}_q^2 = \mathbb{F}_q \to Frobenius$
 - Pour p>2 : $|\mathbb{F}_q^2| = \frac{q+1}{2}$ Thm de caractérisation des carrés

 - Corollaire : -1 est un carré dans \mathbb{F}_q ssi $q \equiv 1[4]$
- III. Polynômes irréductibles sur \mathbb{F}_p [3]
 - Suite du dev 2 : Il existe des polynômes irréductibles de tout degré
 - Exemple : \mathbb{F}_4 , \mathbb{F}_8

Bibliographie:

- 1- Rombaldi : Algèbre et géométrie
- 2- Perrin : Cours d'algèbre
- 3-Gozard : Théorie de Galois